КЕТОНЫ

Кетоны — класс органических соединений, характеризующийся присутствием одной или нескольких двухэквивалентных карбонильных групп CO, по числу которых отличают моно-, ди- и т. д. К. В монокетонах отличают К. с двумя одноэквивалентными предельными и непредельными переменными, общей формулы R‘CO"R‘ (R — углеводородный остаток) и К. с одной двухэквивалентной переменной: R"СО". Если переменные R в монокетонах формулы RCOR одинаковы, получаются простые К., а если переменные R различны — будут смешанные К. Предельные К. выражаются общей формулой С nH2n+1.CO.CnH2n+1 и представляют гомологический ряд, распадающийся на многочисленные порядки изомерных К. Изомерия начинается с К. С 5 и обуславливается различием числа углеродных атомов в отдельных переменных или при равенстве числа углеродных атомов изомерией углеводородного остатка. Называют жирные К., обыкновенно обозначая оба углеводородных остатка, связанных с карбонилом, и прибавляя слово К., например СН 3 СОСН 3 называется диметилкетон, СН 3 СОС 2 Н 5 — метилэтилкетон и т. п. Их можно представить также происшедшими от соединения кислотного остатка с углеводородным и называть согласно с этим: СН 3 СОСН 3 метилацетилом, СН 3 СОС 5 Н 5 этилацетилом или метилпропионилом и т. п. Исходят также и из углеводородов: кетобутан СН 3 СОС 2 Н 5, кетопропан CH 3COCH3 и т. д. (Байер). Наконец, простые К. получают название от тех кислот, от которых произошли, с окончанием — "он": (СН 3)2 СО — ацетон; (С 2 Н 5)2 CО — пропион, (С 3 Н 7)2 СО — бутирон и т. д. Номенклатура ароматических кетонов составляется также различно: С 6 Н 5 СОС 6 Н 5 — дифенилкетон или бензофенон, СН 3 СОС 6 Н 5 — метилфенилкетон или ацетофенон, или ацетилбензол и т. д. Общие способы образования кетонов. К. могут быть получены из всех классов органических соединений, за исключением альдегидов. 1) Из углеводородов. При нагревании с водой дигалоидозамещенных углеводородов, в которых оба атома галоида находятся при одном атоме углерода и насыщают его, происходит К.: (СН 3)2 ССl 2 + Н 2 О = (СН 3)2 СО + 2НСl; С 6 Н 5 ССl 2 С 6 Н 5 + Н 2 О = 2НСl + С 6 Н 5 СОС 6 Н 5. Галоидопроизводные углеводородов этиленного ряда, содержащие CCl или CBr, в этиленном остатке при действии слабой серной кислоты или окиси свинца и воды дают К.: СН 3 ССl:СН 2 + H2 O = (СН 3)2 СО + НСl. Присоединением воды к углеводородам формы RC≡CH под влиянием, например, бромной ртути (Кучеров) происходят К.: СН 3 С:СН+Н 2 О=СН 3 СОСН 3. Окислением ароматических углеводородов ряда дифенилметана также получаются ароматические К.: С 6 Н 5 СН 2 СН 3 + О 2 = С 6 Н 5 СОСН 3 (метилфенилкетон) + Н 2 О. Углеводороды С n Н 2n—2 при нагревании с уксусной кислотой до 280° дают продукты присоединения, из которых действием воды получают К. (B é hal, Desgrez). Эти реакции не имеют практического значения, но важны для изучения изомерии К. 2) Из спиртов. При окислении первичных спиртов формулы RCHR 1.CH2 OH происходит муравьиная кислота и К. — RCOR 1, например: СН 3 СН(С 2 Н 5)СН 2 ОН + О = СН 3 СОС 2 Н 5 + СН 2 О 2 + Н 2 О. При окислении вторичных спиртов (окисление по возможности слабое) получается: (CnH2n+1)2CH(OH) + O = (Cn2n+1)2 CO + Н 2 О например СН 3 СН(ОН)СН 3 + О = СН 3 СОСН 3 + Н 2 О. Третичные спирты R:C(OH)R 1 превращаются в К. в момент образования. Вторичные и вторично-третичные гликоли C nH2n(OH)2 при обработке водоотнимающими веществами дают К. Третичные гликоли (пинаконы) разлагаются на К. и воду уже при нагревании со слабой серной кислотой: (СН 3)2 С(ОН)(ОН)С(СН 3)2 (пинакон) = Н 2 О + (СН 3)3 С.СО.СН 3 (третичный метилбутилкетон). 3) Из кислот К. получаются сухой перегонкой солей (лучше всего Ca или Ba) одноосновных жирных или ароматических кислот; причем, если была взята соль одной кислоты, получается простой К., при перегонке же эквивалентной смеси солей различных кислот получается смешанный К. При этой реакции металл выделяется в виде углекислой соли, а радикалы R двух кислотных молекул соединяются с карбонилом: , например (СН 3 СОО) 2 Са = (СН 3)2 СО + СаСО 3 (СН 3 СОО) 2 Са + (С 2H5 СОО) 2 Са = 2СаСО 3 + 2СН 3 СОС 2 Н 5 (СН 3 СО 2)2 Са + (С 6 Н 5 СО 2)2 Са = 2СаСО 3 + 2СН 3 СОС 6 Н 5. При перегонке солей всегда происходят побочные продукты: из уксуснокислого кальция, например, помимо C 6H6 O, получены еще гомологи C 4H8 O (t° кипения 65°), С 5H10 О (t° кипения 90—95°) и думазин С 5H10 О (Fittig). Реакция довольно обща: с ее помощью получены наиболее сложные К. (обобщена она Шанселем). На отношении известковых солей к нагреванию Destrem основал способ получения К. сухой перегонкой известковых соединений первичных спиртов: (С 2 Н 5 О) 2 Са=С 3 Н 6 О+СаО+СН 4, потому что (С 2 Н 5 О) 2 Са=2С 2 Н 4 +СаО+Н 2 О и (С 2 Н 5 О) 2 Са+2Н 2 О=Са(С 2 Н 3 О 2)+H8. К. можно получать также нагреванием до 190° натровых солей кислот С n Н 2n О 2 с соответствующим ангидридом (при ангидриде другой кислоты получается смешанный К.): CH3 COONa + (СН 3 СО) 2 О = CH 3 C(ONa)(ОСОСН 3)2 = (СН 3)2 СО + СО 2 + СН 3 СО 2 Nа (Перкин). Другая общая реакция получения К. состоит в действии цинкорганических соединений на хлорангидриды одноосновных кислот жирного и ароматического ряда (Киоцца и Фрейнд). В первый момент реакции происходит присоединение хлорангидрида к цинкорганическому соединению: СН 3 СОСl+Zn(СН 3)2 =СН 3 С(СН 3)СlOZnСН 3 и затем уже обмен хлора на углеводородный остаток. Действуя в первый момент водой или новой частицей хлорангидрида, получают К. (во вторую фазу с водой происходят третичные спирты): СН 3 С(СН 3)СlOZnСН 3 + Н 2 О = (СН 3)2 СО + HCl + ZnО + CH 4 поэтому обыкновенно и берут две частицы хлорангидрида на частицу цинкорганического соединения: 2С 6H5 СОСl + Zn(СН 3)2 = ZnCl2 + 2С 6 Н 5 СОСН 3 (ацетофенон). Вместо хлорангидрида можно взять ангидрид и вместо цинкорганического соединения цинк-натрий и йодгидрин (Зайцев): (СН 3 СО) 2 О + (CH 3I)2 + Na2 Zn = 2(СН 3)2 СО + 2NaI + ZnO. Ароматические К. получаются также действием хлорангидридов кислот на ароматические углеводороды в присутствии хлористого алюминия: C 6H5COCl+C6H6=(C6H5)2 CO+HCl, тот же результат получается при замене хлорангидрида хлорокисью углерода (Фридель и Крафтс). Кислоты С n Н 2n O с большим частичным весом при нагревании с фосфорным ангидридом дают К. (Киппинг): 2C 6H13CO2 H=(С 6H13)2 СО+СО 22 О. β-кетонокислоты (см.) и особенно их эфиры разлагаются при кипячении со слабыми щелочами или кислотами на спирт, СО 2 и К.: CH.CO.CH2CO2C2H5 + Н 2 О = С 2 Н 5 ОН + СО 2 + СН 3 СО.СН 3. Так как атомы водорода в группе СН 2 ацетоуксусного эфира можно обменять на любой углеводородный остаток, то появляется возможность синтеза К. общей формуле СН 3 СОСН 2(CnH2n+1) и СН 3 СО.СН(С n Н 2n+1)2 (Франкланд и Дюппа). На отщеплении кетонокислот основан также способ получения К. из хлорангидридов C nH2n—1 OCl нагреванием с хлорным железом, причем выделяется НСl и получается соединение кетонокислоты с хлорным железом, которое водой разлагается, и кетонокислота, выделяя СО 2, дает К.: 2С 2 Н 5 СОСl + FеСl 3 = С 2 Н 5 СОС 2 Н 4 СОСl 2 FеСl 2 + НСl и C 2H5COC2H4COCl2.FeCl2 + H2 O = С 2 Н 5 СОС 2 Н 5 + СО 2 + FeCl3 + НСl. К. получаются также при окислении третичных оксикислот С n Н 2n О 3: (С 3 Н 7)2 С(ОН)СО 2 Н + О = (С 3 Н 7)2 СО + СО 2 + Н 2 О. Щелочные соли β-галоидопроизводных α-оксикислот (со вторичным углеводородным остатком) при кипячении с водой дают К.: СН 2 Сl.СН 3 С(ОН)СО 2 Nа = (СН 3)2 СО + NaCl + СО 2. К. (предельные и непредельные), наконец, можно получать нагреванием в токе окиси углерода алкоголятов натрия в присутствии солей. Свойства. К. показывают нейтральную реакцию; низшие члены их — легкоподвижные жидкости с характерным запахом, перегоняющиеся без разложения и растворимые в воде. С увеличением содержания углерода способность растворяться в воде быстро падает; средние и высшие члены в воде уже нерастворимы, но хорошо растворяются в спирте и эфире. Высшие члены (от С 13 Н 26 О) тела твердые кристаллические, не перегоняющиеся под обыкновенным давлением. Все вообще К. легче воды. Ароматические К. в большинстве жидкости. К. изомерны альдегидам (см.) и имеют много свойств общих с ними (К. можно рассматривать как альдегиды, в которых атом водорода замещен углеводородным остатком). При восстановлении К. двойная связь кислорода с углеродом в группе >С=О переходит в простую, и из этой группы с присоединением водорода получается группа — , при этом К. переходят во вторичные спирты: RCOR 1 переходит в RCH(OH)R 1, например ацетон во вторичный пропиловый спирт: СН 3 СОСН 3 + 2Н = СН 3 СН(ОН)СН 3. При восстановлении натрием в присутствии воды образуются наряду с вторичными спиртами третичные гликоли (пинаконы) — соединения, происшедшие из двух частиц К., например: 2(СН 3)2 СО + 2Н = (СН 3)2.С(ОН)С(ОН)(СН 3)2. Соединения К. с кислыми сернистокислыми щелочами и синильной кислотой также происходят с превращением двойной связи в группе СО в простую: . Соединения с кислыми сернистокислыми щелочами особенно характерны для жирных К. и употребляются для их очищения и отделения. Соединения эти образуются при взбалтывании К. с концентрированным раствором кислой сернистокислой щелочи. При нагревании со слабыми кислотами или углекислыми щелочами снова выделяется К. Соединения эти образуются, впрочем, не со всеми К., а только с теми, которые содержат метильную группу (Гримм). С HCN кетоны дают нитрилы оксикислот: (СН 3)2 СО + HCN = (СН 3)2 С.(OH)CN. Под влиянием НСl (газ) на смесь К. и меркаптанов происходит их соединение с выделением воды и образованием меркаптолов (Бауман), например: СН 3 СОСН 3 + 2С 2 Н 5 SН = (СH 3)2 С.(SC 2H5)2 + Н 2 О. Меркаптолы нелетучи, нерастворимы в воде и очень прочны относительно действия щелочей и кислот. Пятихлористый фосфор переводит К. в хлоропроизводные углеводородов, замещая кислород карбонильной группы двумя атомами хлора: (СН 3)2 СО + PCl 5 = (СН 3)2 ССl 2 + PCl3; реакция легко идет дальше и атом хлора с водородом соседнего атома углерода выделяется в виде НСl, таким образом происходят непредельный хлоропроизводные: (СН 3)2.С.Сl 2 -НСl=СН 3.СН 2.С.Cl. Для карбонильных соединений особенно характерен переход в соединения, в которых кислород заменен двухэквивалентным, содержащим азот остатком. Такие соединения с выделением воды получаются при смещении К. с водным раствором гидроксиламина (ацетоксимы — кетоксимы): >С = О + H 2 NOH = >С = NOH + Н 2 О и действием гидразинов, особенно фенилгидразина (гидразоны): >C = O + H2NOH = >C = NOH + H2 O и >С = О + Н 2 NNНС 6 Н 5 = >С = NNHC 6H5 + H2O. Кетоксимы в большинстве тела твердые кристаллические, низший член их перегоняется без разложения и растворим в воде. При нагревании с кислотами происходит распадение на гидроксиламин и К. Амальгама натрия восстанавливает кетоксимы в кислом растворе до первичных аминов: (CH3)2CNOH + 4H = (CH3)2CHNH2 + H2O. Гидроксильный водород кетоксимов может быть замещен натрием, спиртовым или кислотным остатком. Замечательное превращение претерпевают ацетильные производные кетоксимов с третичным атомом водорода при нагревании: диизопропилацетоксим, например, посредством интермолекулярной перестановки атомов переходит в изомасляный изопропиламид: (СН 3)2 СНС(NOН)СН(СН 3)2 = (CH3)2CHCONHCH(CH3)2. То же происходит и при ароматических кетоксимах: дифенилацетоксим, например, под влиянием PCl 5 вместо (С 6 Н 5)2 С.NCl дает изомерный хлористый бензанилид C 6H5CClNC6H5. Гидразоны перегоняются без разложения в вакууме, постоянны относительно щелочей, но кислотами разлагаются опять на К. и гидразины. Очень характерны фенилгидразинные производные: они служат даже для количественного определения К. От альдегидов К. резко отличаются своим отношением к окислителям: слабые окислители на них не действуют (К. не восстановляют окиси серебра), да и более сильные действуют медленно и чем больше молекулярный вес К., тем труднее окисление (Hercz). Лучше изучено и легче идет окисление с хромовой смесью (3 части K 2Cr2O7, 1 часть Н 24 и 10 частей H 2 О), причем К. распадаются на кислоты с меньшим содержанием углерода, чем во взятом К., и распадение происходит всегда между карбонилом и соседним атомом углерода, так что одна переменная окисляется с карбонилом, а другая — самостоятельно. Ацетон, например, СН 3 СОСН 3 окисляется в уксусную кислоту СН 3 СООН и углекислоту СО 2 (продукт дальнейшего окисления муравьиной кислоты); диэтилкетон — СН 3 СН 2 СОCН 2 СН 3 в пропионовую кислоту СН 3 СН 2 СООН и уксусную кислоту СН 3 СООН. В случае смешанных К. окисление может идти по двум направлениям, так как каждая переменная может окисляться с карбонилом и в результате будет 4 кислоты, так, например, этилизобутилкетон СН 3 СН 2 СОСН 2 СН(СН 3)2, с одной стороны, может дать пропионовую кислоту СН 3 СН 2 СООН и изомасляную кислоту СН(СН 3)2 СООН, а с другой стороны — уксусную СН 3 СООН и изовалериановую (СН 3)2 СНСН 2 СООН. Которая из этих реакций главная и которая побочная — зависит от природы переменных и от условий окисления. Раньше полагали возможным вывести правило, что карбонильная группа окисляется вместе с наименее гидрогенизированным углеводородным остатком (Попов), но дальнейшие исследования доказали, что все зависит от природы переменных. Так как метил СН 3 и фенил C 6H5 особенно трудно окисляются, то в К., их содержащих, они при окислении остаются соединенными с карбонилом. Вторичный радикал RСН окисляется легче, чем первичный RСН 2. В большинстве — чем богаче радикал углеродом, тем он труднее окисляется (Вагнер). Щелочным раствором марганцово-калиевой соли можно иногда окислить К. до кетонокислот с равным содержанием углерода (Gl ü cksmann), стало быть, без разрыва углеродной цепи. Так, например, из пинаколина (СН 3)3 С.СОСН 3 происходит триметилпировиноградная кислота (СН 3)3 С.СО.СООН. В ароматическом ряду это происходит иногда почти количественно. Разрыв углеродной цепи происходит также под влиянием крепкой азотной кислоты, причем происходят динитропроизводные углеводородов; например, пропион С 2 Н 5 СОС 2 Н 5 дает динитроэтан CH 3CH(NO2)2, метилпропилкетон СН 3 СОС 3 Н 7 — динитропропан СН 3 СН 2 СН(NO 2)2 (Шансель). Аммиак не дает с К. продуктов аналогичных альдегидаммиакам, но образует кислородные основания (изучены Гейнцом), с ацетоном, например, дает диацетонамин C 6H13 NO и триацетонамин C 9H17 NO, которые представляют собственно продукты уплотнения ацетона. Водород в жирных переменных К. может быть замещен галоидами, цианом, роданом, гидроксилом, изонитрозогруппой и группой НSО 3, в ароматических — галоидами, нитрогруппой, амидом, гидроксилом и HSO 3. Многочисленные галоидопроизводные К. образуются прямым действием галоидов на К. Действием соляной кислоты на динитрилы получаются циановые производные К.: CH3C(NH)CH2 CN + Н 2 О = CH 3COCH2CN + NH3. Образование изонитрозокетонов, помимо способа, указанного при кетоальдегидах (см.), происходит еще под влиянием азотистой кислоты и едкого кали в избытке на гомологи ацетоуксусного эфира: СН 3.СО.СН(СН 3).СО 22 Н 5 + HNO2 = CН 3COC(NOH)CH3 + С 2 Н 5 ОН + СО 2 (см. Изонитрозосоединения). Непредельные жирные К. бедны числом и малоизвестны. Они прямо соединяются с галоидами, галоидоводородными кислотами и водородом, некоторые также и с аммиаком. Непредельные К. общей формулы С n Н 2n—2 O не получаются из кислот С n Н 2n—2 O, но происходят при разложении кислот С 2 Н 2n—4O3, главным образом из предельных К. действием щелочей и кислот, причем выделяется вода и получается непредельный К., который является в то же время продуктом уплотнения (К. жирные и ароматические склонны вообще к реакциям уплотнения, но не дают полимеров, как альдегиды). Действуя, например, на ацетон серной кислотой (Капе), известью (Фиттиг), цинкорганическими соединениями (Павлов) или, чаще, насыщая его хлористым водородом и обрабатывая спиртовым KHO получают окись мезитила (изопропилиденацетон): СО.(СН 3)2 + СО.(СН 3)2 — Н 2 О = (СН 3)2.С.СН.СО.СН 3. Диацетоновый спирт при обработке купоросным маслом (Гейнц) дает также окись мезитила: СН 3 СОСН 2.С(СН 3)2 ОН = (СН 3)2.С.СН.СО.СН 3 + Н 2 О. Окись мезитила получается еще и при многих других реакциях. Дальнейшей конденсацией ацетона известью (Фиттиг) или соляной кислотой и спиртовым KHO (Baeyer) получается форон (СН 3)2.С.СН.СО.СН.С(СН 3)2 (диизопропилиденацетон), происходящий из трех частиц ацетона с выделением двух частиц воды. Оба эти соединения дают оксимы, пятихлористый фосфор замещает кислород обоих двумя атомами хлора, оба дают продукты присоединения с бромом и т. д., что доказывает принадлежность их к К. и непредельность их. Дальнейшим уплотнением ацетона получается ксилитон C 12H18 O и возможно уплотнение еще дальше. Нахождение К. в природе и их практическое применение незначительны. В технике имеет значение один только ацетон (см.). Ф. Ворожейкин. Δ .


Смотреть больше слов в «Энциклопедическом словаре»

КЕТРИЦ →← КЕТОНОФЕНОЛЫ

Смотреть что такое КЕТОНЫ в других словарях:

КЕТОНЫ

класс органических соединений, характеризующийся присутствием одной или нескольких двухэквивалентных карбонильных групп CO, по числу которых отличают м... смотреть

КЕТОНЫ

        класс органических соединений, содержащих карбонильную группу 3СОСН3, ароматического ряда — бензофенон С6Н5СОС6Н5. В отличие от приведённых сим... смотреть

КЕТОНЫ

, карбонильные соед., в к-рых группа С=О связана с двумя атомами С. По номенклатуре ИЮПАК, назв. К. образуют путем присоединения к назв. соответствующих углеводородов суффикса "он" или к назв. радикалов, связанных с кетогруппой С=О, слова "кетон"; при наличии старшей группы кетогруппу обозначают префиксом "оксо". Напр., соед. СН <sub>3</sub> СН <sub>2</sub> СОСН <sub>2</sub> СН <sub>2</sub> СН <sub>3</sub> наз. 3-гексанон или этилпропилкетон, соед. СН <sub>3</sub> СОСН <sub>2</sub> СН <sub>2</sub> СООН - 4-оксопентановая к-та. Для нек-рых К. приняты тривиальные назв. (см. табл.). <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/68e493a1-2b21-4a2d-9dc6-5510e24c23ef" alt="КЕТОНЫ фото №1" align="absmiddle" class="responsive-img img-responsive" title="КЕТОНЫ фото №1"> <br> Особый класс циклич. ненасыщ. дикетонов - <i>хиноны.</i> <p> В ИК спектрах К. характеристич. полосы поглощения валентных колебаний группы С=О лежат в области частот (v<sub>C=O</sub>) 1720-1700 см <sup>-1</sup> (алифатич. К.), 1820-1700см <sup>-1</sup> (циклич. К.), причем v<sub>C=O</sub> возрастает с увеличением напряженности цикла. При сопряжении группы С=О с кратными связями или арилом v<sub>C=O</sub> снижается на 20-40 см <sup>-1</sup>. Хим. сдвиги протонов a-метиленовых групп К. в спектрах ПМР находятся в области 2-3 м. д., а метиленовой группы, соседней с двумя карбонилами (для дикетонов), - в области 3-4 м. д.; хим. сдвиги группы <sup>13</sup> С=О в спектрах ЯМР <sup>13</sup> С лежат в области 200-220 м. д. Электронные спектры К. содержат типичные полосы с l<sub> макс</sub> 270-300 нм (e 15-20), отвечающие п:p-переходу. Для сопряженных моно-, ди- и полиеновых К. наиб. характерны полосы поглощения в области p:p<sup>* </sup>- переходов, l<sub> макс </sub>200-300 нм (e 10000 и выше). В масс-спектрах К. имеются пики, соответствующие a-разрыву молекулы К., причем предпочтительно отщепляется большая алкильная группа. Так, масс-спектры алифатич. метилкетонов содержат наиб. интенсивный пик с <i> т/z</i>43 (<img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/b0e79b51-0c27-4d05-92fa-3dbebf2b55cb" alt="КЕТОНЫ фото №2" align="absmiddle" class="responsive-img img-responsive" title="КЕТОНЫ фото №2">).Для метилкетонов характерен также b-разрыв мол. иона с миграцией Н от g-атома С (перегруппировочный пик с m/z 58). По степени окисленности К., как и альдегиды, занимают промежут. положение между спиртами и к-тами, что во многом определяет их хим. св-ва. К. восстанавливаются до вторичных спиртов гидридами металлов, напр. LiAlH<sub>4</sub> или NaBH<sub>4</sub>, водородом (кат. - Ni, Pd), изопропаволом в присут алкоголята Аl (р-ция Меервейна - Понндорфа - Верлея). При восстановлении К. натрием или электрохимически (катодное восстановление) образуются пинаконы: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/95ac6981-1bf7-4916-8a67-68e124ec6d22" alt="КЕТОНЫ фото №3" align="absmiddle" class="responsive-img img-responsive" title="КЕТОНЫ фото №3"> <br> При взаимод. К. с амальгамированным Zn и конц. НСl (р-ция Клемменсена) или с гидразином в щелочной среде (р-ция Кижнера - Вольфа) группа С=О восстанавливается до СН <sub>2</sub>. В отличие от альдегидов, многие К. устойчивы при хранении к действию О <sub>2</sub>. К., содержащие a-метиленовую группу, окисляются SeO<sub>2</sub> до 1,2-дикетонов более энергичными окислителями, напр. КМnО <sub>4 </sub>- до смеси карбоновых к-т (см. <i> Попова правило</i>).<i></i> Циклич. К. при взаимод. с HNO<sub>3 </sub> или КМnО <sub>4</sub> подвергаются окислит. расщеплению цикла, напр. из циклогексанона образуется адипиновая к-та. Линейные К. окисляются надкислотами до сложных эфиров, циклические - до лактонов (р-ция Байера - Виллигера). К., содержащие a-атомы Н, относятся к СН-кислотам средней силы (<i> рК <sub> а</sub></i>10-20). Для них характерно превращ. в <i>енолы</i> или <i>енолят-анионы</i>: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/87f28f14-a44c-4892-97c9-b7d62b2c692c" alt="КЕТОНЫ фото №4" align="absmiddle" class="responsive-img img-responsive" title="КЕТОНЫ фото №4"> <br> На этом основана способность таких К. реагировать как С-или О-нуклеофилы. Концентрация енольной формы зависит от строения К. и составляет (в %): 0,0025 (ацетон), 2 (циклогексанон), 80 (ацетилацетон). Енолизация катализируется к-тами и основаниями. К. образуют продукты замещения a-атомов Н при галогенировании действием Вr<sub>2</sub>, N-бромсукцинимидом, SO<sub>2</sub>Cl<sub>2</sub>, при тиилировании дисульфидами. При алкилировании и ацилировании енолятов К. образуются либо продукты замещения a-атомов Н в К., либо О-производные енолов. Большое значение в орг. синтезе имеют альдольная и кретоновая конденсации, напр.: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/0ea9aac7-a743-4eea-a0fe-e4b09f158896" alt="КЕТОНЫ фото №5" align="absmiddle" class="responsive-img img-responsive" title="КЕТОНЫ фото №5"> <br> При конденсации с альдегидами К. реагируют гл. обр. как СН-кислоты, напр. из К. и СН <sub>2</sub> О в присут. основания получают a,b-ненасыщенные К.: RCOCH<sub>3</sub> + СН <sub>2</sub> О : RCOCH=CH<sub>2</sub> + Н <sub>2</sub> О Вследствие полярности карбонильной группы <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/aa14b2f4-3453-4e28-9b85-3a512e1734f4" alt="КЕТОНЫ фото №6" align="absmiddle" class="responsive-img img-responsive" title="КЕТОНЫ фото №6"> К. могут вступать в р-ции как С-электрофилы, напр. при конденсации с производными карбоновых к-т (конденсация Штоббе, р-ция Дарзана и т. п.): <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/548578bd-c503-4691-aafe-518e27b3d42f" alt="КЕТОНЫ фото №7" align="absmiddle" class="responsive-img img-responsive" title="КЕТОНЫ фото №7"> <br> Особенно легко нуклеоф. атаке подвергаются a,b-непределъные кетоны, но в этом случае атакуется двойная связь (р-ция Михаэля), напр.: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/d1033746-9b0f-476c-bb65-c52f76e2d886" alt="КЕТОНЫ фото №8" align="absmiddle" class="responsive-img img-responsive" title="КЕТОНЫ фото №8"> <br> При взаимод. с илидами Р (алкилиденфосфоранами) К. обменивают атом О на алкилиденовую группу (р-ция Виттига): R<sub>2</sub>C=O + Ph<sub>3</sub>P=CHR' : R<sub>2</sub>C=CHR' + Ph<sub>3</sub>PO С циклопентадиеном К. образуют фулъвены, напр.: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/5e447531-9527-4779-8092-93d21f1959b2" alt="КЕТОНЫ фото №9" align="absmiddle" class="responsive-img img-responsive" title="КЕТОНЫ фото №9"> <br> При конденсации К. с гидроксиламином получаются кетоксимы R<sub>2</sub>C=NOH, с гидразином - гидразоны R<sub>2</sub>C=NЧ ЧNH<sub>2</sub> и азины R<sub>2</sub>C=NЧN=CR<sub>2</sub>, с первичными аминами - Шиффовы основания R<sub>2</sub>C=NR', со вторичными аминами - <i> енамины.</i> К. способны присоединять по карбонильной группе воду, спирты, бисульфит Na, амины и др. нуклеофилы, хотя эти р-ции протекают не так легко, как в случае альдегидов. Поскольку в спиртовых р-рах равновесие между К. и его полукеталем сильно смещено влево, получить кетали из К. и спиртов трудно: RCOR' + R:OH D RR'C(OH)OR: Для этой цели используют р-цию К. с эфирами ортомуравьиной к-ты. К. взаимод. с С-нуклеофилами, напр. с литий-, цинк- или магнийорг. соед., а также с ацетиленами в присут. оснований (р-ция Фаворского), образуя третичные спирты: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/5a7f6e6d-1d96-4946-b748-5652649ecd51" alt="КЕТОНЫ фото №10" align="absmiddle" class="responsive-img img-responsive" title="КЕТОНЫ фото №10"> <br> В присут. оснований к кетонам присоединяется HCN, давая a-гидроксинитрилы (циангидрины): R<sub>2</sub>C=O + HCN : R<sub>2</sub>C(OH)CN При катализе к-тами К. реагируют как С-электрофилы с ароматич. соед., напр.: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/293e5c65-e7cd-479c-a77f-b8914b677a02" alt="КЕТОНЫ фото №11" align="absmiddle" class="responsive-img img-responsive" title="КЕТОНЫ фото №11"> <br> Гомолитич. присоединение К. к олефинам приводит к a-алкилзамещенным К., фотоциклoприсоединение к оксетанам, напр.: <br> <img src="https://words-storage.s3.eu-central-1.amazonaws.com/production/article_images/5a3aa3a52685b21ade9b292f/76f4b783-c214-4840-8ebb-98c338f27fa1" alt="КЕТОНЫ фото №12" align="absmiddle" class="responsive-img img-responsive" title="КЕТОНЫ фото №12"> <br> К. играют важную роль в метаболизме в-в в живых организмах. Так, убихинон участвует в окислит. - восстановит. р-циях тканевого дыхания. К соед., содержащим кетонную группу, относятся нек-рые важные моносахариды (D-фруктоза и др.), терпены (ментон, карвон), компоненты эфирных масел (камфора, жасмон), прир. красители (индиго, ализарин, флавоны), стероидные гормоны (кортизон, прогестерон). Общие пром. методы синтеза К.- каталитич. окисление насыщ. углеводородов и олефинов кислородом, а также дегидрирование и окислит. дегидрирование вторичных спиртов. К. синтезируют также окислит. расщеплением третичных 1,2-гликолей действием Рb(ОСОСН <sub>3</sub>)<sub>4</sub> или НIO<sub>4</sub>, пиролизом Са- или Ва-солей карбоновых к-т, пропусканием паров к-т над оксидами Со или Тh, взаимод. зфиров или ортоэфиров карбоновых к-т и ацилгалогенидов с реактивами Гриньяра или кадмийорг. соед., ацилированием арома-тич. соед. (р-ция Фриделя-Крафтса), гидролизом геминальных дигалогенидов и др. К. применяют как р-рители, экстрагенты, для синтеза полимеров, пестицидов, стабилизаторов, фотоматериалов, лек. и душистых в-в и др. См. также <i> Ацетон, Ацетофенон, Бензофенон, Метилизобутилкетон, Метилэтилкетон, Циклогексанон</i> и др. О специфич. св-вах дикетонов см. <i>Дикарбонильные соединения.</i> <i> Лит.</i> Бюлер К., Пирсон Д.. Органические синтезы, пер. с англ., ч. 2, МД 1973; Общая органическая химия, пер. с англ., т. 2, М., 1982, с. 570-692, 765-847; The chemistry of the carbonyl group, v. 1, ed. by S. Patai, L. N. Y. Sydney, 1966; там же, v. 2, ed by J. Zabicky, L, 1970; Houben Weyl, Methoden der organischen Chemie, Bd 7/2a, 2b, 2c Ketone (TI 1 3), 4 Aufl, Stuttg., 1973 77. <i> М. Г Виноградов.</i> </p><p><br></p>... смотреть

КЕТОНЫ

кето́ны класс органических соединений, содержащих карбонильную группу, связанную с двумя углеводородными радикалами; широко примен. в промышленности к... смотреть

КЕТОНЫ

1) Орфографическая запись слова: кетоны2) Ударение в слове: кет`оны3) Деление слова на слоги (перенос слова): кетоны4) Фонетическая транскрипция слова ... смотреть

КЕТОНЫ

КЕТОНЫ, органические соединения, содержащие карбонильную группу (С=О), присоединенную к двум углеводородным группировкам. Кетоны - жидкости или низкопл... смотреть

КЕТОНЫ

(нем. Keton, от Aketon - ацетон) - ор-ганич. соединения общей ф-лы RC(O)R', содержащие карбонильную группу, связанную с одинаковыми или разл. углеводор... смотреть

КЕТОНЫ

корень - КЕТОН; окончание - Ы; Основа слова: КЕТОНВычисленный способ образования слова: Бессуфиксальный или другой∩ - КЕТОН; ⏰ - Ы; Слово Кетоны содерж... смотреть

КЕТОНЫ

КЕТОНЫ, RCOR?, органические соединения, содержащие карбонильную группу > С=О, связанную с двумя (одинаковыми или разными) углеводородными радикалами R ... смотреть

КЕТОНЫ

КЕТОНЫ - RCOR?, органические соединения, содержащие карбонильную группу " С=О, связанную с двумя (одинаковыми или разными) углеводородными радикалами R и R?. Получаются окислением вторичных спиртов и др. методами. Кетоны - полупродукты в органическом синтезе, растворители. См. Ацетон, Метилэтилкетон, Циклогексанон.<br>... смотреть

КЕТОНЫ

КЕТОНЫ , RCOR?, органические соединения, содержащие карбонильную группу > С=О, связанную с двумя (одинаковыми или разными) углеводородными радикалами R... смотреть

КЕТОНЫ

КЕТОНЫ, RCOR?, органические соединения, содержащие карбонильную группу > С=О, связанную с двумя (одинаковыми или разными) углеводородными радикалами R ... смотреть

КЕТОНЫ

Органические кислоты, которые разлагаются на углекислый газ и воду, в процессе высвобождая энергию. Они образуются в результате разложения жиров и наряду с глюкозой легко усваиваются мозгом и служат важным источником энергии. Также известны как кето-тела и кето-кислоты.... смотреть

КЕТОНЫ

RCOR', оргаиич. соединения, содержащие карбонильную группу С = О, связанную с двумя (одинаковыми или разными) углеводородными радикалами R и R'. Получа... смотреть

КЕТОНЫ

м. мн. ч. chetoni m pl

КЕТОНЫ

класс органических соединений, содержащих карбонильную группу, соединенную с двумя атомами углерода; к К. относится ряд биологически активных веществ —... смотреть

КЕТОНЫ

кетоны - класс органических соединений, содержащих карбонильную группу, связанную с двумя углеводородными радикалами; широко примен. в промышленности как растворители и для синтеза различных продуктов. <br><br><br>... смотреть

КЕТОНЫ

кетоны — класс органических соединений, содержащих карбонильную группу, соединенную с двумя атомами углерода; к К. относится ряд биологически активных веществ — стероидные гормоны, кетоновые тела и др. <br><br><br>... смотреть

КЕТОНЫ

Ударение в слове: кет`оныУдарение падает на букву: оБезударные гласные в слове: кет`оны

КЕТОНЫ

класс органических соединений, содержащих карбонильную группу, соединенную с двумя атомами углерода; к К. относится ряд биологически активных веществ - стероидные гормоны, кетоновые тела и др.... смотреть

КЕТОНЫ

мн., Р. кето/нов; ед. кето/н (2 м)

КЕТОНЫ

сущ. мн. ч., биохим. ketones

КЕТОНЫ

кет'оны, -ов, ед. ч. кет'он, -а

КЕТОНЫ

кетоны кет`оны, -ов, ед. кет`он, -а

КЕТОНЫ

хим. chetoni

КЕТОНЫ

cétones

КЕТОНЫ RCOR?,

- органические соединения, содержащие карбонильную группу ""С=О, связанную с двумя (одинаковыми или разными) углеводороднымирадикалами R и R?. Получаются окислением вторичных спиртов и др. методами.Кетоны - полупродукты в органическом синтезе, растворители. См. Ацетон,Метилэтилкетон, Циклогексанон.... смотреть

T: 855