ТУМАННОСТИ

Туманности — Так называются видимые в достаточно сильные трубы в различных местностях небесного свода бесформенные скопления светящейся материи, похожие на легкие облачка или хлопья фосфоресцирующего тумана. Т. на первый взгляд легко смешать со слабыми телескопическими кометами, но Т. не изменяют своего положения среди соседних звезд, не имеют чувствительного параллакса (см.) — не принадлежат к солнечной системе, а одинаково далеки от нас, как и звезды. К Т. близко подходят так назыв. звездные кучи; между этими типами светил нельзя даже провести резкой грани. Многие Т., имеющие вид в слабейшие трубы сплошной тускло светящей массы (всего лучше их определить словом "светлый налет"), в более сильные трубы оказываются разложенными на отдельные яркие точки. Вместе с улучшением оптических средств все большее число Т. переходит в разряд разложимых. С другой стороны, спектральный анализ доказал, что многие Т. никогда не могут быть разложены, что они представляют собой действительно скопление материи в газообразном состоянии и во всяком случае не состоят из отдельных твердых или жидких телец. Разнообразие видов Т. и звездных куч настолько велико, что если взять, с одной стороны, такую характерную кучу широко расставленных звезд, как Плеяда, а с другой стороны, бесформенные клубы космической материи, как Т. в созвездии Ориона, то можно подобрать ряд небесных объектов, которые составят непрерывный и постепенный переход между такими различными типами светил. Лишь несколько самых ярких Т. видимы невооруженным глазом и то как светлые точки, едва отличимые для самого острого зрения от обыкновенных звезд. Обратно, некоторые широко раскинутые звездные кучи (а для очень близоруких людей даже Плеяды) могут служить образцом того, как представляются в трубе настоящие Т. Названия nebula, νεφέλιον употреблялись еще древними астрономами. Гиппарх называл так известное звездное скопление Praesepe в созвездии Рака. Птолемей по непонятной теперь причине обозначал "туманными" некоторые яркие звезды. Эти νεφελοετδες считались астрологами опасными — они приносили слепоту. По-видимому, уже Al Sufi, арабский астроном Х в., знал о существовании Т. в созвездии Андромеды. На голландских картах (около 1500 г.) это место неба обозначено группой точек. Первое описание знаменитой Т. Андромеды дал Тобиас Майер в 1612 г. Затем Цизат в Люцерне, наблюдая комету в 1618 г., заметил Т. в созвездии Ориона. Эту Т. подробно описал Гюйгенс в 1656 г. В 1716 г. Галлей знал еще только шесть Т., но каталог Мессье (1771) содержит 103 Т. Около того же времени 42 Т. южного неба занес на карту Лакайль во время своего пребывания (1752) на мысе Доброй Надежды. Гигантский шаг вперед сделал В. Гершель. При своих многолетних "поисках " по всему небосводу он открыл до трех тысяч новых Т., иногда довольно значительных по величине и слабых, иногда еле отличимых от звезд. Гершель различал шесть классов: звездные кучи; разложимые Т.; Т. в тесном смысле слова (неправильный, правильный — овальные и кольцеобразные); планетарные Т.; звездные Т.; туманные звезды. Его первый "Catalogue of one Thousand new Nebulae and Clusters of Stars " появился в 1786 г. Затем (1789—1802) Гершель напечатал несколько добавочных каталогов. Сын его, Д. Гершель, продолжал ту же работу для южного полушария (1834—38). Общий каталог Т., изданный им в 1864 г., заключал 5079 предметов. Поисками за новыми Т. занимались затем Дёнлоп, Росс, Лассель, Даррэ, Шмидт, в новейшее время Стефан, Бигурдан. В 1888 г. вышел "A New Gener a l Catalogue of nebulae and clusters of stars", обработанный Дрейером; он содержит 7840 предметов. Теперь принято обозначать Т. номерами этого каталога (в сокращении N. G. C.). Лорд Росс, пользуясь громадной оптической мощью своих рефлекторов, открыл чрезвычайно интересные детали многих Т. Он установил новый, весьма обширный класс спиральных Т. и доказал, что многие так называемые овальные Т. не имеют правильной фигуры. В 1880 г. Дрэпер получил первый фотографический снимок Т. (в Орионе). Фотография дала возможность путем увеличения времени экспозиции (иногда в течение нескольких ночей подряд) обнаруживать присутствие туманной материи: там, где глаз даже в лучшие рефракторы ничего не может распознать, обнаружены громадные, хотя крайне слабые Т. во многие десятки квадратных градусов. Описанная Гюйгенсом Т. в Орионе составляет ничтожную по площади часть всего скопления, занимающего своими разветвлениями половину созвездия. Фотография же открыла весьма сложные туманные полосы, окутывающие группу Плеяд. Из фотографических снимков Т. особенно известны работы Исаака Робертса и бр. Анри. Среди различных тесных звездных куч, которые в слабые инструменты имеют вид Т., особенно интересны "шарообразные" скопления мельчайших звездочек равных между собой по яркости (12—15 величины). Наиболее характерны такие кучи в созв. Тукана, Центавра. Звездочки расположены в них гораздо теснее около центра, чем у окраин. Громадное число звездочек в таких кучах оказались переменными. Они правильно меняют блеск на 1—2 величины в различные, иногда очень короткие промежутки времени. Громадное большинство неразложимых Т. (несколько тысяч) относится к классу овальных, размеры их обыкновенно весьма малы. Они расположены группами в различных частях неба, притом как раз в местностях, бедных звездами. Иные круглыеТ. в противоположность шарообразным звездным кучам с центральным сгущением и с размытыми контурами кажутся совершенно равномерно сияющими, резко очерченными дисками; по виду напоминают диски планет, освещенных посторонним светом. Такие Т. названы Гершелем планетарными; он насчитывал до 80 таких Т.; цвет их голубоватый; типом может служить одна из Т. в Большой Медведице. Росс показал, впрочем, что многие планетарные Т. должны быть отнесены к спиральным. Среди этих последних наиболее известны Т. в созвездиях Гончих Собак и Девы. В спиральных Т. от центральных сгущений расходятся неправильными завитками ветви струйчатого строения, постепенно сходящие на нет. К этому классу, судя по фотографиям Робертса, относятся и Т. в Андромеде. Небольшое число Т. (по подсчету Гершеля — 12) имеет характерный вид кольца, иногда круглого, иногда элиптического, вероятно, в зависимости от угла, составленного их плоскостями с лучами зрения. Иногда, как в известной Т. в созв. Лиры, внутреннее пространство заполнено чрезвычайно редким туманом, чаще же оно вполне темно. В Т. Лиры фотография указала еще на звездообразное сгущение в центре кольца. В спиральных и кольцеобразных Т. хотели видеть иллюстрацию и доказательство справедливости различных космогонических гипотез (о них см. Системы мира). Большинство самых известных, ярких и значительных по размерам Т. имеет совершенно неправильную форму (около 100 Т.). Сюда относятся Т. в Орионе так наз. Омега-Туман в Щите Собесского; Dump-bell nebula в Лисице (напоминающая фигурой гирю атлетов); Т. в созв. Райской Птицы (целое собрание отдельных слившихся Т.); Т. около звезды η Корабля (по-видимому, связанная физически с этой звездой); Т., окутывающая Плеяды. Туманные звезды — не что иное, как небольшие Т. с резко определенными светлыми ядрами. Гершель видел в них последнюю стадию перехода Т. в звезды. Маггелановы облака — "богатейшие сокровищницы южного неба" — описаны впервые мореплавателями XVI стол.; подробно изучали их Лакайль и Д. Гершель. Невооруженному глазу они представляются бесформенными светящимися облачками, ясно видимыми в безлунные ночи. На самом деле они состоят из большого числа звездных куч, Т. и отдельных звезд. По подсчету Гершеля, в большом облаке — 284 Т., 66 звездных куч и 582 звезды; в малом облаке — 32 Т., 6 куч, 200 звезд. Т. в известном смысле слова можно назвать и Млечный Путь. Мелкие звезды в нем, сливающиеся для глаза и различимые отдельно в трубу, местами как бы запутаны в бесформенный светящий туман, который совершенно не разлагается на звезды. О распределении Т. см. Системы мира. Аналогично двойным звездам встречаются двойные и кратные Т. Си (See) указал, что вытянутые фигуры двойных Т. весьма похожи на фигуры, полученные путем теоретических соображений для близких масс, вызывающих взаимно громадные приливные явления. В некоторых двойных Т. замечено даже относительное орбитальное движение. Для оценки яркости Т. употребляют следующие приемы. Помещают между чечевицами земного окуляра трубы зеркальце, на которое падает рассеянный свет от поставленной сбоку лампы. Тогда в поле зрения рядом с Т. видно небольшое светлое размытое пятно, яркость которого можно изменять передвигая лампу. При исследовании яркости отдельных частей больших Т. можно "проектировать" искусственное пятнышко на самое Т. и изменять положение лампы, пока пятно не сольется с Т., исчезнет на ее фоне. Иногда направляют вспомогательную трубу на какую-либо звезду, яркость которой известна, и, выводя окуляр из фокуса объектива, портят изображение звезды настолько, что она кажется светлым пятном; его-то яркость и сравнивают с Т. видимой в главную трубу. Подобным методом Пикеринг определил, напр., что планетарная Т. в Лебеде равна по сумме блеска звезде 8.6 величины. Некоторые Т. оказались неоспоримо переменными. Наиболее резкий пример составляет Т., открытая Хайндом в 1852 г. в созв. Тельца. Хайнд пометил ее очень слабой; в 1855 г., по наблюдениям Даррэ и других, Т. стала очень яркой, а в 1868 г. те же наблюдатели не находили и следов Т. В 1890 г. удалось заметить эту Т. в большой рефрактор Ликской обсерватории; в феврале 1895 г. она была снова довольно ярка, а в сентябре того же года снова исчезла совершенно. Подобные же резкие изменения яркости подмечены в Т., найденной О. Струве в 1868 г. в том же созв. Тельца. Перемены, заверенные различными астрономами в некоторых больших Т. (напр. в Орионе около η Корабля), вероятно, должны быть объяснены изменениями относительной яркости различных частей Т. Впрочем, иногда нужно допустить и действительные перемещения туманных масс. Напр. Гершель отметил, что в темном пространстве между лопастями так наз. trif î d-nebula (в созв. Стрельца) видна характерная тройная звезда, а теперь эта звезда уже приходится на самой Т. Т. были исследованы спектрально впервые Хёггинсом в 1864 г. Он открыл, что спектр многих Т. состоит лишь из нескольких отдельных светлых линий, т. е. эти Т. состоят из раскаленного светящегося газа (см. Спектральный анализ). Такой "газовый" спектр дают все большие, неправильной формы Т. (Орион, η Корабль, омега, dumpbell), а также, по-видимому, все кольцеобразные и планетарные Т. Напротив того, спиральные Т. (в Андромеде, Гончих Собаках) дают непрерывный спектр, такой же как и спектр шарообразных звездных куч, т. е. эти миры состоят не из газа, а из отдельных твердых или жидких раскаленных частиц. В сплошном спектре Т. Андромеды заметны лишь широкие полосы поглощения около его красного конца. Замечательно, что "газовый" спектр всех Т. почти одинаков. В нем неизменно видны четыре главных линии: одна, наиболее яркая, в зеленом цвете с длиной волны в 500 μμ; три — с длинами волн в 496, 486 и 434 μμ — в голубом и фиолетовом. Последние две линии, быть может, совпадают с линиями F и H γ водорода. Сначала принималось, что зеленая линия соответствует одной из линий спектра азота. Теперь это мнение всеми оставлено, и даже можно считать доказанным (Килер), что первым двум линиям спектра Т. не отвечает ни одна из линий солнечного спектра: вещество, производящее их, нам неизвестно. Спектры Т. различаются между собой лишь относительной яркостью основных линий, причем зеленая неизменно превосходит все остальные. Для Т. Ориона Фогель оценивает яркости как 10: 5: 8: 1. В 1888 г. Копеланд открыл в спектре Т. Ориона слабую желтую линию, совпадающую с линией гелия D 3 (см. Спектральный анализ). Та же линия оказалась в спектрах некоторых других Т. Фотография обнаружила присутствие еще нескольких линий в фиолетовом конце спектров. Для объяснения характерных спектров Т. приводились следующие соображения (Цёлльнер). При изменении плотности и температуры тела, дающего спектр, перемещается в спектре область его наибольшей яркости. Если плотность газа постепенно уменьшается при постоянной температуре, то число линий в спектре газа должно уменьшаться и спектр может быть сведен, наконец, к одной линии, положение которой в том или другом цвете и зависит от температуры и состава газа. Хёггинсу, напр., удалось свести спектр азота к одной зеленой линии. Подобные опыты повторяли Франкланд и Локайер. Эта теория объясняет также и отсутствие в спектре Т. линии С обыкновенно столь яркой в спектре водородной. Невозможно, однако, допустить, что в различных областях пространства вполне повторяются столь одинаковые условия давления и температуры, вызывающие один и тот же монохроматический спектр Т. Скорее нужно думать, что здесь мы видим особое специфическое состояние вещества, нам неизвестное. Подтверждением этому служит и то, что все исследованные спектрально "новые" звезды, в начале своего появления дававшие крайне сложные спектры с темными и яркими линиями, затем перерождались в планетарные Т. с их характерным спектром. Таковы были Nova Cygni (1876), Nova Aurigae (1892), к тому же спектру уже пришла и Nova Persei, вспыхнувшая в прошлом году. Здесь мы имеем даже фактическое опровержение пресловутой "небулярной" космогонической гипотезы — очевидно, нельзя рассматривать Т. как не сложившиеся еще звезды. В Т. и тесных "звездных" кучах нужно, напротив того, видеть особые типы миров, совершенно отличных от звезд (понимая под этим словом светила, аналогичные нашему солнцу); а строения и условия равновесия этих миров нам непонятны. В. Серафимов.


Смотреть больше слов в «Энциклопедическом словаре»

ТУМАННЫЕ КАРТИНЫ →← ТУМАНН ПАУЛЬ

Смотреть что такое ТУМАННОСТИ в других словарях:

ТУМАННОСТИ

Так называются видимые в достаточно сильные трубы в различных местностях небесного свода бесформенные скопления светящейся материи, похожие на легкие о... смотреть

ТУМАННОСТИ

ТУМАННОСТИРаньше астрономы называли так любые небесные объекты, неподвижные относительно звезд, имеющие, в отличие от них, диффузный, размытый вид, как у маленького облачка (употребляемый в астрономии для "туманности" латинский термин nebula означает "облако"). Со временем выяснилось, что некоторые из них, например, туманность в Орионе, состоят из межзвездного газа и пыли и принадлежат нашей Галактике. Другие, "белые" туманности, как в Андромеде и в Треугольнике, оказались гигантскими звездными системами, подобными Галактике (см. ГАЛАКТИКИ). Здесь речь пойдет о газовых туманностях.До середины 19 в. астрономы считали, что все туманности - это далекие скопления звезд. Но в 1860, впервые использовав спектроскоп, У.Хёггинс показал, что некоторые туманности газовые. Когда сквозь спектроскоп проходит свет обычной звезды, наблюдается непрерывный спектр, в котором представлены все цвета от фиолетового до красного; в некоторых местах спектра звезды имеются узкие темные линии поглощения, но заметить их довольно трудно - они видны лишь на качественных фотографиях спектров. Поэтому при наблюдении глазом спектр звездного скопления выглядит как непрерывная цветная полоса. Спектр излучения разреженного газа, напротив, состоит из отдельных ярких линий, между которыми практически нет света. Как раз это и увидел Хёггинс при наблюдении некоторых туманностей через спектроскоп. Более поздние наблюдения подтвердили, что многие туманности действительно являются облаками горячего газа. Часто астрономы называют "туманностями" и темные диффузные объекты - тоже облака межзвездного газа, но холодные.Типы туманностей. Туманности разделяют на следующие основные типы: диффузные туманности, или области H II, такие, как Туманность Ориона; отражательные туманности, как туманность Меропы в Плеядах; темные туманности, как Угольный Мешок, которые обычно связаны с молекулярными облаками; остатки сверхновых, как туманность Сеть в Лебеде; планетарные туманности, как Кольцо в Лире.Диффузные туманности. Широко известные примеры диффузных туманностей - это Туманность Ориона на зимнем небе, а также Лагуна и Тройная (Трехраздельная) - на летнем. Темные линии, рассекающие Тройную туманность на части, - это холодные пылевые облака, лежащие перед ней. Расстояние до этой туманности ок. 2200 св. лет, а ее диаметр чуть менее 2 св. лет. Масса этой туманности в 100 раз больше солнечной. Некоторые диффузные туманности, например Лагуна 30 Золотой Рыбы и Туманность Ориона, значительно крупнее и массивнее. См. также МЕЖЗВЕЗДНОЕ ВЕЩЕСТВО.В отличие от звезд газовые туманности не имеют собственного источника энергии; они светятся только в том случае, если внутри них или рядом находятся горячие звезды с температурой поверхности 20 000-40 000? С. Эти звезды испускают ультрафиолетовое излучение, которое поглощается газом туманности и переизлучается им в форме видимого света. Пропущенный через спектроскоп, этот свет расщепляется на характерные линии излучения различных элементов газа.Отражательные туманности. Отражательная туманность образуется, когда облако с рассеивающими свет пылинками освещается расположенной рядом звездой, температура которой не так высока, чтобы заставить светиться газ. Небольшие отражательные туманности иногда видны рядом с формирующимися звездами.Темные туманности. Темные туманности - это облака, состоящие в основном из газа и отчасти из пыли (в соотношении по массе 100:1). В оптическом диапазоне они закрывают от нас центр Галактики и видны как черные пятна вдоль всего Млечного Пути, например, Большой Провал в Лебеде. Но в инфракрасном и радиодиапазонах эти туманности излучают довольно активно. В некоторых из них сейчас формируются звезды. Плотность газа в них значительно выше, чем в межоблачном пространстве, а температура ниже, от ?260 до ?220? С. В основном они состоят из молекулярного водорода, но обнаружены в них и другие молекулы вплоть до молекул аминокислот.Остатки сверхновых. Когда состарившаяся звезда взрывается, ее внешние слои сбрасываются со скоростью ок. 10 000 км/с. Это быстро летящее вещество, подобно бульдозеру, сгребает перед собой межзвездный газ, и вместе они образуют структуру, подобную туманности Сеть в Лебеде. При столкновении движущееся и неподвижное вещества нагреваются в мощной ударной волне и светятся без дополнительных источников энергии. Температура газа при этом достигает сотен тысяч градусов, и он становится источником рентгеновского излучения. Кроме того, в ударной волне усиливается межзвездное магнитное поле, а заряженные частицы - протоны и электроны - ускоряются до энергий гораздо выше энергии теплового движения. Движение этих быстрых заряженных частиц в магнитном поле вызывает излучение в радиодиапазоне, называемое нетепловым.Самый интересный остаток сверхновой - это Крабовидная туманность. В ней выброшенный сверхновой газ еще не смешался с межзвездным веществом.В 1054 была видна вспышка звезды в созвездии Тельца. Восстановленная по китайским летописям картина вспышки показывает, что это был взрыв сверхновой звезды, которая в максимуме достигла светимости в 100 млн. раз выше солнечной. Крабовидная туманность находится как раз на месте той вспышки. Измерив угловые размер и скорость расширения туманности и поделив одно на другое, рассчитали, когда это расширение началось, - почти точно получился 1054 год. Сомнений нет: Крабовидная туманность - остаток сверхновой.В спектре этой туманности каждая линия раздвоена. Ясно, что один компонент линии, сдвинутый в голубую сторону, приходит от приближающейся к нам части оболочки, а другой, сдвинутый в красную сторону, - от удаляющейся. По формуле Доплера вычислили скорость расширения (1200 км/с) и, сравнив ее со скоростью углового расширения, определили расстояние до Крабовидной туманности: ок. 3300 св. лет.Крабовидная туманность имеет сложное строение: ее внешняя волокнистая часть излучает отдельные эмиссионные линии, характерные для горячего газа; внутри этой оболочки заключено аморфное тело, излучение которого имеет непрерывный спектр и сильно поляризовано. Кроме того, оттуда исходит мощное нетепловое радиоизлучение. Это можно объяснить только тем, что внутри туманности быстрые электроны движутся в магнитном поле, испуская при этом синхротронное излучение в широком диапазоне спектра - от радио до рентгеновского. Долгие годы загадочным оставался источник быстрых электронов в Крабовидной туманности, пока в 1968 не удалось обнаружить в ее центре быстро вращающуюся нейтронную звезду - пульсар, остаток взорвавшейся примерно 950 лет назад массивной звезды. Совершая 30 оборотов в секунду и обладая огромным магнитным полем, нейтронная звезда выбрасывает в окружающую туманность потоки быстрых электронов, ответственных за наблюдаемое излучение. См. также ПУЛЬСАР.Оказалось, что механизм синхротронного излучения весьма распространен среди активных астрономических объектов. В нашей Галактике можно указать немало остатков сверхновых, излучающих в результате движения электронов в магнитном поле, например, мощный радиоисточник Кассиопея А, с которым в оптическом диапазоне связана расширяющаяся волокнистая оболочка. Из ядра гигантской эллиптической галактики М 87 выбрасывается тонкая струя горячей плазмы с магнитным полем, излучающая во всех диапазонах спектра. Неясно, связаны ли активные процессы в ядрах радиогалактик и квазаров со сверхновыми, но физические процессы излучения в них весьма схожи.Планетарные туманности. Простейшие галактические туманности - это планетарные. Их открыто около двух тысяч, а всего в Галактике их ок. 20 000. Они концентрируются в галактическом диске, но не тяготеют, как диффузные туманности, к спиральным рукавам.При наблюдении в небольшой телескоп планетарные туманности выглядят размытыми дисками без особых деталей и поэтому напоминают планеты. У многих из них вблизи центра видна голубая горячая звезда; типичный пример - туманность Кольцо в Лире. Как и у диффузных туманностей, источником их свечения служит ультрафиолетовое излучение звезды, находящейся внутри.Спектральный анализ. Чтобы проанализировать спектральный состав излучения туманности, часто используют бесщелевой спектрограф. В простейшем случае вблизи фокуса телескопа помещают вогнутую линзу, превращающую сходящийся пучок света в параллельный. Его направляют на призму или дифракционную решетку, расщепляющую пучок в спектр, а затем выпуклой линзой фокусируют свет на фотопластинке, получая при этом не одно изображение объекта, а несколько - по числу линий излучения в его спектре. Однако изображение центральной звезды при этом растягивается в линию, поскольку у нее непрерывный спектр.В спектрах газовых туманностей представлены линии всех важнейших элементов: водорода, гелия, азота, кислорода, неона, серы и аргона. Причем, как и везде во Вселенной, водорода и гелия оказывается гораздо больше остальных.Возбуждение атомов водорода и гелия в туманности происходит не так, как в лабораторной газоразрядной трубке, где поток быстрых электронов, бомбардируя атомы, переводит их в более высокое энергетическое состояние, после чего атом возвращается в нормальное состояние, излучая свет (см. также ЭЛЕКТРОВАКУУМНЫЕ И ГАЗОРАЗРЯДНЫЕ ПРИБОРЫ). В туманности нет таких энергичных электронов, которые могли бы своим ударом возбудить атом, т.е. "забросить" его электроны на более высокие орбиты. В туманности происходит "фотоионизация" атомов ультрафиолетовым излучением центральной звезды, т.е. энергии пришедшего кванта достаточно, чтобы вообще оторвать электрон от атома и пустить его в "свободный полет" (см. также ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ). В среднем проходит 10 лет, пока свободный электрон встретится с ионом, и они вновь объединятся (рекомбинируют) в нейтральный атом, выделив энергию связи в виде квантов света. Рекомбинационные линии излучения наблюдаются в радио-, оптическом и инфракрасном диапазонах спектра.Наиболее сильные линии излучения у планетарных туманностей принадлежат атомам кислорода, потерявшим один или два электрона, а также азоту, аргону, сере и неону. Причем они излучают такие линии, которые никогда не наблюдаются в их лабораторных спектрах, а появляются только в условиях, характерных для туманностей. Эти линии называют "запрещенными". Дело в том, что атом обычно находится в возбужденном состоянии менее миллионной доли секунды, а затем переходит в нормальное состояние, излучая квант. Однако существуют некоторые уровни энергии, между которыми атом совершает переходы очень "неохотно", оставаясь в возбужденном состоянии секунды, минуты и даже часы. За это время в условиях относительно плотного лабораторного газа атом обязательно сталкивается со свободным электроном, который изменяет его энергию, и переход исключается. Но в крайне разреженной туманности возбужденный атом долго не сталкивается с другими частицами, и, наконец, совершается "запрещенный" переход. Именно поэтому впервые обнаружили запрещенные линии не физики в лабораториях, а астрономы, наблюдая туманности. Поскольку в лабораторных спектрах этих линий не было, некоторое время даже считалось, что они принадлежат неизвестному на Земле элементу. Его хотели назвать "небулий", но недоразумение вскоре прояснилось. Эти линии видны в спектрах как планетарных, так и диффузных туманностей. В спектрах таких туманностей есть и слабое непрерывное излучение, возникающее при рекомбинации электронов с ионами. См. также СПЕКТРОСКОПИЯ.На спектрограммах туманностей, полученных со щелевым спектрографом, линии часто выглядят изломанными и расщепленными. Это - эффект Доплера, указывающий на относительное движение частей туманности. Планетарные туманности обычно расширяются радиально от центральной звезды со скоростью 20-40 км/с. Оболочки сверхновых расширяются гораздо быстрее, возбуждая перед собой ударную волну. У диффузных туманностей вместо общего расширения обычно наблюдается турбулентное (хаотическое) движение отдельных частей.Важная особенность некоторых планетарных туманностей - стратификация их монохроматического излучения. Например, излучение однократно ионизованного атомарного кислорода (потерявшего один электрон) наблюдается в обширной области, на большом расстоянии от центральной звезды, а двукратно ионизованные (т.е. потерявшие два электрона) кислород и неон видны лишь во внутренней части туманности, тогда как четырехкратно ионизованный неон или кислород заметны лишь в центральной ее части. Этот факт объясняется тем, что необходимые для более сильной ионизации атомов энергичные фотоны не достигают внешних областей туманности, а поглощаются газом уже недалеко от звезды.По химическому составу планетарные туманности весьма разнообразны: элементы, синтезированные в недрах звезды, у некоторых из них оказались подмешанными к веществу сброшенной оболочки, а у других - нет. Еще сложнее состав остатков сверхновых: сброшенное звездой вещество в значительной степени смешано с межзвездным газом и, кроме того, разные фрагменты одного остатка иногда имеют различный химический состав (как у Кассиопеи А). Вероятно, это вещество выбрасывается с различных глубин звезды, что дает возможность проверять теорию эволюции звезд и взрыва сверхновых.Происхождение туманностей. Диффузные и планетарные туманности имеют совершенно разное происхождение. Диффузные всегда находятся в областях звездообразования - как правило, в спиральных рукавах галактик. Обычно они связаны с крупными и холодными газопылевыми облаками, в которых формируются звезды. Яркая диффузная туманность - это небольшой кусочек такого облака, разогретый родившейся поблизости горячей массивной звездой. Поскольку такие звезды формируются нечасто, диффузные туманности далеко не всегда сопровождают холодные облака. Например, в Орионе есть такие звезды, поэтому есть несколько диффузных туманностей, но они крошечные по сравнению с невидимым для глаза темным облаком, занимающим почти все созвездие Ориона. В небольшой области звездообразования в Тельце нет ярких горячих звезд, и поэтому нет заметных диффузных туманностей (есть лишь несколько слабых туманностей вблизи активных молодых звезд типа Т Тельца).Планетарные туманности - это оболочки, сброшенные звездами на заключительном этапе их эволюции. Нормальная звезда светит за счет протекающих в ее ядре термоядерных реакций, превращающих водород в гелий. Но когда запасы водорода в ядре звезды истощаются, с ней происходят быстрые перемены: гелиевое ядро сжимается, оболочка расширяется, и звезда превращается в красный гигант. Обычно это переменные звезды типа Миры Кита или OH/IR с огромными пульсирующими оболочками (см. также ПЕРЕМЕННЫЕ ЗВЕЗДЫ). В конце концов они сбрасывают внешние части своих оболочек. Лишенная оболочки внутренняя часть звезды имеет очень высокую температуру, иногда выше 100 000? C. Она постепенно сжимается и превращается в белый карлик, лишенный ядерного источника энергии и медленно остывающий. Таким образом, планетарные туманности выбрасываются их центральными звездами, тогда как диффузные туманности типа Туманности Ориона - это вещество, которое осталось неиспользованным в процессе формирования звезд.... смотреть

ТУМАННОСТИ

- участки межзвёздной среды, выделяющиеся своим излучением или поглощением излучения на фоне неба. Ранее Т. наз. всякий неподвижный на небе протя... смотреть

ТУМАННОСТИ

, облака разреженных газов и пыли, наблюдаемые в нашей и других галактиках. Туманность Конская голова - часть тёмного пылевого облака. Туманн... смотреть

ТУМАННОСТИ

ТУМАННОСТИ — скопление в мировом пространстве крайне разреженных газообразных веществ или же звездные скопления, которые даже в сильнейшие телескопы п... смотреть

ТУМАННОСТИ

Звездные скопления, в которых свет отдельных звезд из-за их удаленности сливается, производя впечатление облака с более или менее определенным центром... смотреть

ТУМАННОСТИ

корень - ТУМАН; суффикс - Н; суффикс - ОСТ; окончание - И; Основа слова: ТУМАННОСТВычисленный способ образования слова: Суффиксальный∩ - ТУМАН; ∧ - Н; ... смотреть

ТУМАННОСТИ

неясность, неопределённость жизненного направления, сектологические влияния.

ТУМАННОСТИ ВНЕГАЛАКТИЧЕСКИЕ

        звёздные системы, подобные нашей Галактике; то же, что Галактики.

ТУМАННОСТИ ГАЛАКТИЧЕСКИЕ

- внутригалактические облака разреженных газов ипыли. Туманности галактические, содержащие преимущественно газы, делятсяна сфероидальные планетарные туманности и диффузные туманности, не имеющиеправильной формы. Газовые туманности галактические светятся за счетпереработки в видимый свет коротковолнового (ультрафиолетового) излученияочень горячих звезд, расположенных в самой туманности или около нее.Пылевые туманности галактические подразделяют на светлые (они светятсяотраженным светом) и темные (они видны на фоне Млечного пути илисветящихся туманностей галактических).... смотреть

ТУМАННОСТИ ГАЛАКТИЧЕСКИЕ

внутригалактические облака разреженных газов и пыли. Астрономический словарь.EdwART.2010.

ТУМАННОСТИ ГАЛАКТИЧЕСКИЕ

внутригалактич. облака разреженных газов и пыли. Т. г., содержащие преим. газы, делятся на сфероидальные планетарные туманности и диффузные туманности,... смотреть

ТУМАННОСТИ ГАЛАКТИЧЕСКИЕ

ТУМАННОСТИ ГАЛАКТИЧЕСКИЕ - внутригалактические облака разреженных газов и пыли. Туманности галактические, содержащие преимущественно газы, делятся на сфероидальные планетарные туманности и диффузные туманности, не имеющие правильной формы. Газовые туманности галактические светятся за счет переработки в видимый свет коротковолнового (ультрафиолетового) излучения очень горячих звезд, расположенных в самой туманности или около нее. Пылевые туманности галактические подразделяют на светлые (они светятся отраженным светом) и темные (они видны на фоне Млечного пути или светящихся туманностей галактических).<br>... смотреть

ТУМАННОСТИ ГАЛАКТИЧЕСКИЕ

ТУМАННОСТИ ГАЛАКТИЧЕСКИЕ, внутригалактические облака разреженных газов и пыли. Туманности галактические, содержащие преимущественно газы, делятся на сфероидальные планетарные туманности и диффузные туманности, не имеющие правильной формы. Газовые туманности галактические светятся за счет переработки в видимый свет коротковолнового (ультрафиолетового) излучения очень горячих звезд, расположенных в самой туманности или около нее. Пылевые туманности галактические подразделяют на светлые (они светятся отраженным светом) и темные (они видны на фоне Млечного пути или светящихся туманностей галактических).... смотреть

ТУМАННОСТИ ГАЛАКТИЧЕСКИЕ

протяженные облака разреженного газа, обычно с примесью пылевых частиц, в межзвездном пространстве. Различают планетарные, диффузные, темные и отражательные туманности. Начала современного естествознания. Тезаурус. — Ростов-на-Дону.В.Н. Савченко, В.П. Смагин.2006.... смотреть

ТУМАННОСТИ ГАЛАКТИЧЕСКИЕ

        светящиеся или тёмные облака межзвёздного газа и пыли (см. Межзвёздная среда). Различают диффузные Т. г., планетарные Т. г., остатки вспышек св... смотреть

ТУМАННОСТИ ГАЛАКТИЧЕСКИЕ

ТУМАННОСТИ ГАЛАКТИЧЕСКИЕ , внутригалактические облака разреженных газов и пыли. Туманности галактические, содержащие преимущественно газы, делятся на сфероидальные планетарные туманности и диффузные туманности, не имеющие правильной формы. Газовые туманности галактические светятся за счет переработки в видимый свет коротковолнового (ультрафиолетового) излучения очень горячих звезд, расположенных в самой туманности или около нее. Пылевые туманности галактические подразделяют на светлые (они светятся отраженным светом) и темные (они видны на фоне Млечного пути или светящихся туманностей галактических).... смотреть

ТУМАННОСТИ ГАЛАКТИЧЕСКИЕ

ТУМАННОСТИ ГАЛАКТИЧЕСКИЕ, внутригалактические облака разреженных газов и пыли. Туманности галактические, содержащие преимущественно газы, делятся на сфероидальные планетарные туманности и диффузные туманности, не имеющие правильной формы. Газовые туманности галактические светятся за счет переработки в видимый свет коротковолнового (ультрафиолетового) излучения очень горячих звезд, расположенных в самой туманности или около нее. Пылевые туманности галактические подразделяют на светлые (они светятся отраженным светом) и темные (они видны на фоне Млечного пути или светящихся туманностей галактических).<br><br><br>... смотреть

T: 186