ЭЛЕКТРОДЫ*

Электроды* — Электродами называют части проводников гальванической цепи, погруженные в вещества (см. Электролит), подвергаемые действию гальванического тока. Э. устраивают чаще всего из твердых, проводящих ток веществ, т. е. из металла или угля. Жидкие Э. встречаются нередко в лабораторной и заводской практике, примером чему могут служить ртутные Э., а также Э. из других расплавленных металлов. Термин электрод предложен Фарадеем, чтобы им заменить для частных случаев более общий термин "полюсы". Отсюда следует, что электрод может быть характера положительного полюса; такой электрод Фарадей назвал анодом, а электрод характера отрицательного полюса получил название катода. В зависимости от тех химических превращений, которые совершаются при прохождении тока на границе электрод | электролит, Э. бывают обратимые и необратимые. Границу эту принято графически обозначать выше поставленной вертикальной чертой, как и вообще границу двух веществ, на которой могут развиваться электровозбудительные силы. Обратимым электродом называют такой, у которого в месте соприкосновения электрода с электролитом при перемене направления тока совершается химическое прекращение, как раз обратное тому, что совершалось при первоначальном направлении тока. Э., не удовлетворяющие этому требованию, носят название необратимых. Пример обратимого электрода: тяжелый металл (медь цинк, кадмий и др.), погруженный в раствор соли того же металла. При прохождении тока от меди к медному купоросу — растворяется медь, при обратном направлении тока медь осаждается. Кроме качественных требований, обратимый электрод часто должен удовлетворять количественным требованиям. Такой случай наблюдается для газо-платиновых электродов, т. е. для платины, погруженной частью в раствор электролита, частью же в атмосферу газа, выделяющегося при электролизе, хотя бы, например, в атмосферу водорода. Если сила обратного тока будет такова, что у водород-платинового анода будет происходить только растворение водорода, но не будет выделения кислорода, такой электрод обратим для водород-платинового катода. Обратимые металлические или газо-металлические электроды носят название электродов первого рода. Э. первого рода обратимы для катионов Сu", Zn", Cd", H‘ и т. д. (см. Электролитическая диссоциация), а газо-металлические — для О", Сl‘ и др. Э. второго рода являются обратимыми для анионов Сl‘, Вr‘, J‘ и др. На существование обратимости в этих электродах было впервые указано Нернстом, он же дал и теорию этих электродов. Они представляют металлы, покрытые слоем нерастворимых солей этих металлов, погруженные в раствор соли с тем же анионом, как и у нерастворимой соли. Примером может служить ртутный электрод, покрытый слоем каломели (Hg 2Cl2), или серебряный электрод, покрытый слоем хлористого серебра (AgCl), погруженные в раствор хлористого калия. При прохождении тока в одном направлении, когда электрод является анодом, выделяющийся ион хлора, соединяясь с металлом электрода, образует нерастворимую соль, т. е. как бы хлор "осаждается током на электроде"; когда же электрод становится катодом, хлор нерастворимой соли переходит в раствор. Эта качественная сторона явлений не дает, конечно, полной картины происходящих процессов и говорит о том, что в таком электроде хлор является как бы металлом, отличающимся только знаком электричества его иона, что важно только для общей характеристики явления. Теория же явления, дающая точное представление, основана на химическом взаимодействии веществ у электрода (см. Ostwald, "Lehrbuch der Allg. Chemie", 878 стр.). Еще сложнее теория обратимых электродов 3-го рода. Эти Э. предложены Лютером, как обратимые для металлов, выделяющих водород из воды и, следовательно, не могущих служить в металлическом состоянии электродами. Остановимся на одном примере обратимого Э. для кальция (Са). Свинцовая пластинка, покрытая слоем смеси солей сернокислого свинца и сернокислого кальция, погруженная в раствор, содержащий хлористый кальций и насыщенный сернокислым свинцом и сернокислым кальцием, представляет, по Лютеру, обратимый Э. для кальция. Форма и величина электродов бывает самая разнообразная, в зависимости от тех требований, которым они должны удовлетворять (см. фиг. электродов в статье Электрохимический анализ). Существенной для электрода является та его поверхность, через которую ток попадает в электролит. Если ток электричества (J — сила тока) равномерно распределен по всей поверхности электрода (S), тогда величина J/S носит название плотности тока для данного электрода. Для электрохимических целей часто необходимо хотя бы приблизительное знание этой величины; поэтому вычисляют эту величину делением J на S даже и в таких случаях, когда ток только приблизительно равномерно распределен по электроду. За единицу поверхности электрода принимают 100 квадратных сантиметров и обозначают N.D. 100, для измерения же J — обычную величину, т. е. силу тока, равную одному амперу. Так что N.D. 100 = 1,5 А обозначает, что через поверхность электрода в 100 квадратных сантиметров проходит ток силой в 1,5 ампера. Из специальных электродов должно упомянуть о каломельном обратимом электроде второго рода, получившем большое распространением, благодаря постоянству и простой конструкции. В сосуд (см. фиг.) с впаянной снизу платиновой проволокой, на дне которого находится ртуть, покрытая слоем каломели, наливается нормальный раствор хлористого калия, т. е. 74,6 г в литре раствора, или 0,1 нормальный. Электровозбудительная сила на границе этого электрода и электролита, по Оствальду, в первом случае равна 0,56 вольт, во втором 0,616 вольт. Электрод этот носит название "постоянный каломельный электрод" и применяется в электрохимии (см. статью Электрохимия). Вл. Кистяковский.


Смотреть больше слов в «Энциклопедическом словаре»

ЭЛЕКТРОЕМКОСТЬ* →← ЭЛЕКТРОДИНАМОМЕТР

Смотреть что такое ЭЛЕКТРОДЫ* в других словарях:

ЭЛЕКТРОДЫ*

— Электродами называют части проводников гальванической цепи, погруженные в вещества (см. Электролит), подвергаемые действию гальванического тока. Э. устраивают чаще всего из твердых, проводящих ток веществ, т. е. из металла или угля. Жидкие Э. встречаются нередко в лабораторной и заводской практике, примером чему могут служить ртутные Э., а также Э. из других расплавленных металлов. Термин электрод предложен Фарадеем, чтобы им заменить для частных случаев более общий термин "полюсы". Отсюда следует, что электрод может быть характера положительного полюса; такой электрод Фарадей назвал <span class="italic">анодом,</span> а электрод характера отрицательного полюса получил название <span class="italic">катода.</span> В зависимости от тех химических превращений, которые совершаются при прохождении тока на границе электрод | электролит, Э. бывают <span class="italic">обратимые и необратимые.</span> Границу эту принято графически обозначать выше поставленной вертикальной чертой, как и вообще границу двух веществ, на которой могут развиваться электровозбудительные силы. Обратимым электродом называют такой, у которого в месте соприкосновения электрода с электролитом при перемене направления тока совершается химическое прекращение, как раз обратное тому, что совершалось при первоначальном направлении тока. Э., не удовлетворяющие этому требованию, носят название необратимых. Пример обратимого электрода: тяжелый металл (медь цинк, кадмий и др.), погруженный в раствор соли того же металла. При прохождении тока от меди к медному купоросу — растворяется медь, при обратном направлении тока медь осаждается. Кроме качественных требований, обратимый электрод часто должен удовлетворять количественным требованиям. Такой случай наблюдается для газо-платиновых электродов, т. е. для платины, погруженной частью в раствор электролита, частью же в атмосферу газа, выделяющегося при электролизе, хотя бы, например, в атмосферу водорода.Если сила обратного тока будет такова, что у водород-платинового анода будет происходить только растворение водорода, но не будет выделения кислорода, такой электрод обратим для водород-платинового катода. Обратимые металлические или газо-металлические электроды носят название электродов <span class="italic">первого рода.</span> Э. первого рода обратимы для катионов Сu", Zn", Cd", H' и т. д. (см. Электролитическая диссоциация), а газо-металлические — для О", Сl' и др. Э. <span class="italic">второго</span> рода являются обратимыми для анионов Сl', Вr', J' и др. На существование обратимости в этих электродах было впервые указано Нернстом, он же дал и теорию этих электродов. Они представляют металлы, покрытые слоем нерастворимых солей этих металлов, погруженные в раствор соли с тем же анионом, как и у нерастворимой соли. Примером может служить ртутный электрод, покрытый слоем каломели (Hg <span class="sub">2</span>Cl<span class="sub">2</span>), или серебряный электрод, покрытый слоем хлористого серебра (AgCl), погруженные в раствор хлористого калия. При прохождении тока в одном направлении, когда электрод является анодом, выделяющийся ион хлора, соединяясь с металлом электрода, образует нерастворимую соль, т. е. как бы хлор "осаждается током на электроде"; когда же электрод становится катодом, хлор нерастворимой соли переходит в раствор. Эта качественная сторона явлений не дает, конечно, полной картины происходящих процессов и говорит о том, что в таком электроде хлор является как бы металлом, отличающимся только знаком электричества его иона, что важно только для общей характеристики явления. Теория же явления, дающая точное представление, основана на химическом взаимодействии веществ у электрода (см. Ostwald, "Lehrbuch der Allg. Chemie", 878 стр.). Еще сложнее теория обратимых электродов <span class="italic">3-го рода.</span> Эти Э. предложены Лютером, как обратимые для металлов, выделяющих водород из воды и, следовательно, не могущих служить в металлическом состоянии электродами. Остановимся на одном примере обратимого Э. для кальция (Са). Свинцовая пластинка, покрытая слоем смеси солей сернокислого свинца и сернокислого кальция, погруженная в раствор, содержащий хлористый кальций и насыщенный сернокислым свинцом и сернокислым кальцием, представляет, по Лютеру, обратимый Э. для кальция.<br><p>Форма и величина электродов бывает самая разнообразная, в зависимости от тех требований, которым они должны удовлетворять (см. фиг. электродов в статье Электрохимический анализ). Существенной для электрода является та его поверхность, через которую ток попадает в электролит.<br></p><p>Если ток электричества (<span class="italic">J </span> — сила тока) равномерно распределен по всей поверхности электрода <span class="italic">(S),</span> тогда величина <span class="italic">J/S</span> носит название плотности тока для данного электрода. Для электрохимических целей часто необходимо хотя бы приблизительное знание этой величины; поэтому вычисляют эту величину делением <span class="italic">J</span> на <span class="italic">S</span> даже и в таких случаях, когда ток только приблизительно равномерно распределен по электроду. За единицу поверхности электрода принимают 100 квадратных сантиметров и обозначают <span class="italic">N</span>.<span class="italic">D.</span> 100, для измерения же <span class="italic">J </span> — обычную величину, т. е. силу тока, равную одному амперу. Так что <span class="italic">N.D</span>. 100 = 1,5 <span class="italic">А</span> обозначает, что через поверхность электрода в 100 квадратных сантиметров проходит ток силой в 1,5 ампера. Из специальных электродов должно упомянуть о каломельном обратимом электроде второго рода, получившем большое распространением, благодаря постоянству и простой конструкции.<br></p><p><br></p><p><br></p><p>В сосуд (см. фиг.) с впаянной снизу платиновой проволокой, на дне которого находится ртуть, покрытая слоем каломели, наливается нормальный раствор хлористого калия, т. е. 74,6 г в литре раствора, или 0,1 нормальный. Электровозбудительная сила на границе этого электрода и электролита, по Оствальду, в первом случае равна 0,56 вольт, во втором 0,616 вольт. Электрод этот носит название "постоянный каломельный электрод" и применяется в электрохимии (см. статью Электрохимия). <span class="italic"><br><p>Вл. Кистяковский. </p></span><br></p>... смотреть

T: 265